DeFord Lecture Series

DeFord Lecture Series Speaker Schedule

The DeFord (Technical Sessions) lecture series has been a requirement and a tradition for all graduate students since the late 1940s. Once the official venue for disseminating EPS graduate student research, the DeFord Lecture series is now the forum for lectures by distinguished visitors and members of our community. Faculty and researchers from the Jackson School have invited prestigious researchers from around the world to present a lecture in this series. This is made possible only through a series of endowments, such as those funding past Distinguished Lectures.

The list below shows all the scheduled talks this semester. If you would like to meet with any of the speakers, please contact them or their hosts directly.

DeFord Lecture Series 2024 Speaker Schedule

All talks are Thursdays from 4-5PM (CST) in the Boyd Auditorium (JGB 2.324).  Lectures will be recorded, and most past lectures are posted on the Jackson School YouTube channel.

Jan. 25

Dr. Karin Olson Hoal

Department of Earth and Atmospheric Sciences, Cornell University

Critical Minerals and Metals in a Changing Resources Sector

Abstract: The renewable energy transition presents conflicting interests and impacts: a perceived green low-emissions economy powered by significant increases in not-so-green metals extraction, or mining. Unlike bulk ore commodities, critical minerals and metals that the new energy economy requires are hosted in trace quantities in rocks and minerals. Knowledge of their distribution through mineral and geochemical characterization is important; examples include ores, drillholes, and nodules on the seafloor.

Assumptions as to critical mineral availability, future production, what is where and how to get it out are based on how things have been done in the past, so that new resources are likely to be extracted as they traditionally have been and with similar impacts. As geologists, we understand the complexities of materials variability in the subsurface, with mineral compositions and ore types having a somewhat predictable nature, and we transfer that knowledge into best practice for more sustainable, and risk-reduced operations. This is the area of geometallurgy (geomet), which influences decision making on the engineering and financial side, and which is driving change in the resources sector through understanding geology.

In this presentation, the landscape of critical minerals and metals is addressed from the viewpoint of geoscience and mineral compositional variability, and in the context of a more sustainable and responsive mineral resources sector.

Feb. 1

Dr. Peter Flemings

Department of Earth and Planetary Sciences, University of Texas at Austin

The Mystery of Methane Hydrate: A film on the mission to core a methane hydrate reservoir and a talk about the science behind it.

Abstract:  The Jackson School led a 2 month drilling expedition to collect core and measure in situ properties in a hydrate system in the deepwater Gulf of Mexico in the summer of ‘23. An international team of geobiologists, sedimentologists, petrophysicists, hydrologists, and geochemists is studying how hydrates form and how carbon is exchanged between the ocean and basin sediments.  The Jackson School of Geosciences recently released a short documentary about this mission. I will introduce methane hydrates, and discuss initial results. We will then show the video and have a short Q&A.

Feb. 6

Dr. Arthur Stokreef

Canada Nickel Company

A path to sustainable mining: Low-carbon North American Nickel

Feb. 8

Dr. Simon Jowitt

University of Nevada Reno

The Minerals Industry and Climate Change Mitigation; a Vital Partnership

Feb. 15

Dr. Matthew Becker

Department of Geoscience, California State University Long Beach

How Groundwater Impacts the people and ecosystems of the South Pacific Islands

Abstract: The Pacific Ocean is host to more than 30,000 islands, the vast majority of which are small, remote, and vulnerable to climate variability. Groundwater plays an important role in the resilience of these isolated environments. We will see how groundwater was a critical resource for the first settlers of Rapa Nui (Easter Island), how it helps coral reefs flourish in a nutrient desert (Darwin’s Paradox), and the role it plays in terrestrial flora and fauna. Understanding of these interactions is hindered by the complexity of groundwater flow in coastal and offshore environments. Our recent investigations of the distribution of groundwater flow to fringing coral reefs sheds some light on these processes. Climate change and sea level rise will disrupt and potentially overwhelm these unique and biologically critical ecosystems. An improved understanding of hydrogeologic systems and their interactions with marine life surrounding Pacific islands will be essential for strategic adaptation to environmental stresses.

Feb. 22

Dr. Maureen Long

Department of Earth and Planetary Sciences,
Yale University

The weird and wonderful lowermost mantle: patterns and drivers of Deep mantle flow

Abstract: Mantle convection and its surface manifestation, plate tectonics, are fundamental to Earth’s evolution. Observations of seismic anisotropy, or the directional dependence of seismic wave speeds, provide some of the most direct constraints on the pattern of convective flow in the Earth’s mantle. Seismic anisotropy analysis is routinely applied to study upper mantle processes, leading to fundamental discoveries about the patterns of flow in the upper mantle and the drivers of that flow. There is also convincing observational evidence for seismic anisotropy in the lowermost mantle; however, it has proven challenging to develop reliable frameworks for accurately measuring D” anisotropy and for interpreting these measurements in terms of mantle flow patterns. Despite the challenges, however, observations of lowermost mantle anisotropy have the potential to shed light on a number of fundamental unsolved problems relating to deep mantle structure and dynamics, including the origin and evolution of enigmatic structures such as large low shear velocity provinces (LLSVPs) and ultra-low velocity zones (ULVZs). This talk will describe a set of studies aimed at measuring and interpreting seismic anisotropy at the base of the mantle, using a combination of tools and approaches. The relationships between mantle flow (and its expression in seismic anisotropy) and structures such as LLVPs and ULVZs are of particular interest, given their potential to shed light on fundamental aspects of deep mantle dynamics.

Feb. 29

Francis Nimmo

Department of Earth and Planetary Sciences,
University of California Santa Cruz

How similar is Venus to Earth?

Abstract: Venus and the Earth are almost identical in size and bulk composition, but appear to have followed very different evolutionary paths. Why? And how different are they really? In this talk I will focus on two aspects. One is the recent claim that Venus possesses features similar to continents on Earth, perhaps even suggesting an ancient Venusian ocean that has now vanished. The second is the viscosity structure of Venus’s mantle, and how it compares with that of the Earth. I will suggest some predictions that can be tested with observations from forthcoming Venus spacecraft missions.